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Parallel and Sequential Implementations
for Combining Belief Functions*

Mary McLeish and Fei Song
Dept. of Computing and Information Science

University of Citclph
Guelph,(Ontario Canada, N 1 2W]

Abstract tions: a direct combination based on Dempster's rule and
Thls paper reports our experiments about parallel and an indirect combination through M6bius transforms. We
sequential implementations for combining belief func- further explore parallel algorithms for combining more
tions with an application to a medical diagnostic system, than two belief functions in order to improve the effi-
We us, as a basis existing methods for combining two ciency, as different pieces of evidence can be combined
belief functions: a direct combination based on Demp- in any order as long as they are independent of each
"ster's rule and an indirect combination through Mobius other,
transforms. We further explore various parallel algo- To further test our algorithms, we consider a medi-
rithms for combining more than two belief functions,
as different belief functions can be combined in any or- cal domain that involves the diagnosis of different types
dier as long as they are independent of each other, Our of canine liver diseases (McLeish et l, [19891, [1990],
results indicate that for the general case, the parallel [1991)). This is a domain on which doctors have diffi-
implementation based on faut M8bius transforms proves culty predicting precise or single outcomes, as both the
to be the most efficient. However, for practical applica- numbers of possible outcomes (14) and available tests
tions where most subsets of a frarne of hypotheses have (40) are quite large. In terms of the DS-theory, this
zero probabilities, the parallel implementation based on would require a combination of 40 belief functions over a
an improved direct combination rule remains the most frame of 14 different hypotheses'. Although our parallel
efficient. algorithms can largely speed up the implementation, the

amount of time used is still quite long. Fortunately, for
1 Introduction practical applications, especially our domain, we found

This paper presents parallel and sequential algorithms that most of the subsets have zero probabilities; the num-
for combining belief functions. The Belief Funclion ber of subsets that have non-zero probabilities, called
approach for approximate reasoning, also called the the focal elements, are just about 10 on average. Thus,
I)cmpster-Shafcr theory [Shafer, 1976], can be seen as a special versions of our algorithms can be designed to fa-
generalization of the Probability approach [Pearl, 1988), cilitate the practical application. Our algorithms are all
since probabilities are assigned directly to subsets of a set implemented on a Sequent machine using the parallel C
of mutually exclusive and exhaustive hypotheses rather language and the experimental results are reported later
than each of the hypotheses, in detail,

One important problem for the application of the DS-
theory is the efficiency for combining the belief functions 2 Review of the DS-theory
from different evidences. Barnett [1981] proposed apoly- In DS-theory, probabilities are assigned directly to sub-
nomial algorithm which only applies to sets of single hy- sets of a frame of hypotheses, called a mass function
potheses or singletons. Work by ([Shafer and Logan, (m). Two pieces of evidences can be combined using the
19871 and [Shafer el al., 1987]) deals with extended sub- Dempster's rule, where nmi and rn2 are the mass n'unc-
sets that. form a hierarchical structu,'c. More recently, tions for the given evidences:
Kennes and Srnets [1990] apply fast MWbius transforms
to reduce redundant computations and thus improve the =:MI (BI )?12(B2) I B, n T)2
efficiency even for the general case. n(B) = ({mi (Li)1m2(B) I D, fn B2  }

In this paper, we are concerned with the efficient coin-
bination for more than two belief functions. We use as The rule, as stated ;n [Buchanan and Shotliffe, 1984],
a basis existing methods for combining two belief fmiric- provides a way of nmarrowing the hypothesis set with the

T'This research has been supported by the NSERC Not- 'See [MeLcish land Song, 1991] for the general framework
works of Centers of Excellence Program in Canada. of our expert system for diagnosing canine liver diseases.
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accumulation of evidence and naturally captures the pro- MI ® m2
cess of diagnostic reasoning in medicine and expert rea- (m,) m
soning in general,

There arc two ways for combining mass functions
proposed in the current literature ([Shafer, 19761 and

,Kennes and Smets, 1990]). One is the direct eombina- ntoq qtom
tion based on the Demspter's rule, for which it can be
shown that the following theorem holds:Q
Theorem 2.1 The direct implementation of the Demp. q1 *
ster's rule needs (2" - 1)2 additions and 2"(2" - 1) mui- (Q1,Q 2 ) Q
tiplications.

The other way for combining mass functions is the in- Figure 2: Combination through M6bins Transform
direct combination through M6bius transforms. Based
on a mass function, a commonality function (Q) is fur-
ther defined in (Shafer, 1976): Lemma 2.1 Suppose m and Q are two functions defined

Q(A) = E{m(B) I B D A' over a frame G, then we have:

With commonality functions, the combination of differ- Q(A) = Y, m(B) iff m(A) = (-1)lB-AlQ(B)"
ent evidences is reduced to the multiplication of the corn- B2A B2A
monality functions, Based on the above lemma, we can now construct a fast

Q(A) = KQi(A)...Q,,(A) Mibius transform from Q to m. It is the same as the
where KR- is a constant that does not depend on A. transform from m to Q except that all the links have

A Mbbius transform is a function defined over a weighting factor (-1) (son [Kennes and Smets, 1990] for
partially ordered set. For example, the computations detailed discussions).
from mn to Q and vice versa are all Mbbius transforms. Theorem 2.2 The indirect implementation of Demp-
The idea of a fast M6bius transform is to decompose ster's rule through Mf'bius transforms needs 3n2"n- ad-
the whole transform into a series of simple transforms ditions and 2"+1 multiplications.
[Kennes and Smets, 1990]. In each step, as illustrated
in figure 1, we only consider one hypothesis and its re- 3 Algorithms for Combining Belief
lated transform. For example, the first step will achieve Function.
the transform: {(X, Y) X ý 0 and (Y = X or Y =
X U {e})}, where X and Y are two subsets of E. Then, In this section, we consider how to combine r pieces of
by recursively doing this for all the hypotheses, we will evidence efficiently, with r > 2. In particular, we present
be able to transform from one function to another func- three pairs of algorithms for combining r mass functions:
tion, sequential, parallel, and practical methods.

{ } {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c} 3.1 Sequential Combination Methods
* . .. . Based on the two methods introduced earlier, we can

provide two sequential algorithms for combining more
than two belief functions. A sequential algorithm based

S * • * ,.on Dempster's rule can be given as follows:

algorithm 3.1 sequential & direct implementation
input rn(1 : r][0: 2n - 1], r bodies of mass functions,

and n, the cardinality of the frame
output rn[l][0 : 2n - 1f, the combined mass function

d' * 0begin
{ } {a} {b} {a,b} {c) (a,c) {b,c} {a,b,c} for i = 2 step I until r do

comb-two(Pi[l], mn[i])
Figure 1: Diagram for the Transform: n - Q endfor

end

"To combine mass functions, we follow the path from Here, we use a n-digit binary number to represent a
{rnj} to {Qj) to Q to m, as shown in figure 2. However, frame of size ii, and for each subset, the ith element
although the transform from Q to in is not provided is 1 if the corresponding element is in the subset. Also,
in [Shafer, 1976], it can be proved, following a similar "comb-two" is a procedure for combining two mass func-
apl)roach, that the following lemma holds. tions.
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Corolary 3.1 Algorithm 8.1 needs (r- 1)(2" - 1)2 ad- qtom(rn[1])
ditions and (r - 1)2"(2' - 1) multiplications, end

Another way of implementing the Dempster's rule Corolary 3.4 Algorithm 3.4 needs n2" additions and
is to compute the combined mass function indirectly 2' + r multiplications.
through M~bius transforms. A sequential algorithm for
this method can be given as follows: 3.3 Practical Combination Methods

algorithm 3.2 sequential & indirect implementation To further test our algorithms, we choose a medical do-
begin main that involves the diagnosis of canine liver diseases.

for i = 1 step 1 until r do We found that for such a domain, most of the mass fine-
mtoq(m[i]) tions only have a small number of non-zero subsets, or

endfor focal elements. Although the above algorithms work for
general cases, for practical reasons, we must revise them

for i = 0 step 1 until 2" - 1 do to facilitate the almost null distribution of mass func-
for j = 2 step 1 until r do tions,

rn[1][i) ,- m[ll[i] * mu][i] In the following we first provide a revised procedure
endfor for direct combination based on Dempster's rule.

endfor function comb-two'(mi, ?12, LI, L2 )

qtom(m[1]) begin
end for i = 1 stop 1 until L1 do

Corolary 3.2 Algorithm 8.2 needs n(r + 1)2"-1 addi- for I = 1 step 1 until L2 do

tions and r2" multiplications. m[s] 4-- m[s] + mn Ii] * 17]2

endfor
3.2 Parallel Combination Methods endfor

Since in DS-theory, different pieces of evidence can be K +- 1 - tn[O]
combined in any order as long as they are independent for i = 1 step 1 until 2n .- 1 do
of each other, we can further explore parallel algorithms if m[i] > 0 then
for the combination of more than two belief functions. L +-- L + 1

algorithm 3.3 parallel & direct implementation s1[L] - i; mm[l [] -- m[i]/Kendif
begin endfor

while r > 1 do return L

r' = r/2
for i = I step 1 until r' do in parallel end

comb..two("i[i], m[r'+ i]) Here, "&" is the bitwise operator for the logical opera-
endfor tion "AND", corresponding to the intersection operation
if odd(r) then between two subsets.

m[r' + 1] = m[r]; r = r' + I Then a parallel algorithm for combining more than
else r = r' two mass functions can be designed as follows:

end.-hile algorithm 3.5 practical par. & dir. implementation
end begin

Corolary 3.3 Algorithm 3.3 needs [log t](2" -- 1)2 addi. while r > 1 do
tions and [log r]2"(2" - 1) nultiplivations, where [logr] ý- r/2
stands for the smallest inieger that is greater or equal io -..r i = 1 step 1 until r' do in parallel
logr, L[i] 4-- comb-two'(m(il, tn[r' + i], L[i], L[r' + i])

endfor
algorithm 3.4 parallel & indirect implementation if odd(r) then
begin m[r' + 1] -- m[,r]; r - r' + 1

for i = I step I until r do in parallel else r *.- r'
mtoq(rn[i]) indwhfile

endfor end

for i = 0 step I until 2" - 1 do in parallel To see how speed caa be gained for the above algo-
for j = 2 step 1 until r do rithm, let us consider our domain of canine liver dis-

tnrj][i] - m[lJ[i] * m~j][i ea.es. For a frame of size 14, 214 gives us 16,384. Thus,

ondfor the direct combination of two mass functions would re-
endfor quire (2 -11 )_1 additions and 214(214_1) multiplications.



Combination of Belief Functions 167

However, the above improved direct combination would improved direct combination (algorithm 3.5) is still the
only need about 100 additions and 110 multiplications, most efficient'.

asthe average number of focal elements is 10 for any Further work is being carried out to minimnize redun-
mass functions in our domain (see [Nict~ish and Song, dant. cornpu tation s in a Mobis transform and explore
1991] for dlifferent methods of extracting mnass functions parallelism in Dempster's rule. Methods working with
from medical (data collected over time). continuous data are also being investigated with an ap-

Similarly, we can add a testing statemnent in a M~bius plication to our domain of liver disease diagnosis.
transform and only perform an addition when the new
cecment is non-zero, Since the cost of a testing statement References
is usually less than an arithmetic. operation, we would Blarnett, J.A. 1081. Computational methods for a
expect some saving of timne when most of the subsets mathematical theory of evidence, In Proceedings of the
have zero probabilities. The modified algorithm based 1JCAI Conference. 868--875.
onl the M61bius transforms will be called algorithm 3.6 in Buchanan, 13G. and Shortliffe, E,11. 1984, Rule-Based
our exp~eriment~s. Expert Sy'stems: The MYCIN Erperimenis of the Stan-

4 EprietlRslsford lieuristic Programming Project. Addison-Wesley
Expalgritmsaentall Rmpeseltsdo eqet Publishing Company.
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1,trg machine using the Parallel C language [Osterhaug, of the M~bius transform. In Proceedings of the Sixth

18]A Sequent triachine has an architecture of truly Uncetit aaeetCneec.3431
multiple processors and a shared memory, all connectedceaitMngmntCfrne.3431
through a system bus. This provides a way for increasing McLeish, M. and Song, F. 1991. A framework for medi-
the accessibility of (lati and~ minimizing the cornmunica- cal expert systems using Denipster-Shafer theory. Sub-
tion cost. As a result, we can actually run our algorithms matted to First World Congress on Expert Systems.
on this mnachine and observe t~he improvement of speed Mc~eish, M.; Cecile, M.; Yao, P.; and Stirtuzinger, T.
for a problem of reasonable size. 1989. Experiments using belief functions and weights

In our experiments, we run our algorithms on a ma- of evidence on statistical data and expert opinions. In
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32, which beconme more and more common for Sequent McLeish, M.; Stirtzinger, T,; and Yao, P, 1990. Using
machines. Although our system is not large, it already weights of evidence and belief functions inin edical diag-
shows thme potential of rising parallel algorithms for eff- nosis. Ini Proceedings of the AAAI Spring Symposium,
cienthy combining belief functions. AI in Medicine, 132-136.
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As our results illustrate, for thme general case, thme par- PictnUieiyPes
allcI implementation based on the fast M16bius trans -_________

forms (algorithmn 3.1) is the most efficient. However, for 2'The expcrimnicts for algorithmmns 3.1 awld 3.3 are niot fully
many real applications where most of the subsets have conductcd &q even for one comnbination, it alreadly takes about
zero mnasses, the parallel implementation based on the 1.5 hours on our Sequent mnachine.


